Tetrahedron Letters, Vol.27, No.5, pp 645-648, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

HORNER-WITTIG REACTIONS USING DIBENZOPHOSPHOLE OXIDES: STEREOCHEMICALLY CONTROLLED REDUCTION OF KETONES

Jason Elliott and Stuart Warren*

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW.

Reduction of ketones having an α -dibenzophosphole-5-oxide group with NaBH₄, L-Selectride, or Superhydride gives three Horner-Wittig intermediates and hence <u>E</u>-alkenes, while NaBH₄/CeCl₃ gives erythro intermediates and hence <u>Z</u>-alkenes.

The Horner-Wittig reaction with the diphenylphosphinoyl (Ph_2PO) group is <u>erythro</u> selective¹ while reduction of the α -Ph₂PO-ketones (1) with NaBH₄ gives <u>threo</u> intermediates (2) stereoselectively² and hence <u>E</u>-alkenes³ by stereospecific⁴ elimination of Ph₂PO₂⁻. Reduction of the ketones (1) often gives higher stereoselectivity than the Horner-Wittig reaction itself making an <u>erythro</u> selective reduction desirable. The elimination also sometimes causes problems⁵ and we report that our attempt to improve this final step by using the more electrophilic dibenzophosphole oxide⁶ has revealed that reduction of the ketones (6) shows remarkable stereochemical control not shown by the ketones (1).

The phosphine oxides (5) were prepared from Ph_3P <u>via</u> reductive cleavage of phosphole^{6,7} (3) and capture of the very nucleophilic anion (4) with alkyl halides followed by oxidation with H_2O_2 . The methods usually used¹ for Ph_2PO compounds, such as the hydrolysis of phosphonium salts or the attack of

Grignard reagents on Ph_2POCl , are not suitable for dibenzophospholes as opening of the five-membered ring occurs. Acylation⁸ of the anion of (5) (using LDA not BuLi, which acts as a nucleophile on P, giving reduced yields and several by-products) with esters or lactones gave good yields of the ketones (6) (table 1).

The standard reducing agent (NaBH₄, MeOH, 0 $^{\rm O}$ C, 2 h) for the α -Ph₂POketones (1) gave similar results with the phospholes (6) (table 1), >85% <u>threo</u>-alcohol (7) being formed except for (6c) where the OH group evidently interferes. Addition of CeCl₃ (using the Danishefsky variation of the Luche⁹ reagent: NaBH₄, CeCl₃, MeOH, -78 $^{\rm O}$ C) reverses the selectivity to favour the <u>erythro</u> isomer (table 1) though not usually with such high stereoselectivity.

Т	able 1	: Stereose	lectiv	vity in	n Reduct	tion of	E Ketone	s (1) a	and (6)	
	Synthesis and							Reduction of		
		_	Rec	luction	uction of Ketones (6)			Ketones (1)		
			Yield	1 <u>. Na</u>	BH4	NaBH 4	/CeCl ₃	Nal	3H4	
Series	Rl	\mathbb{R}^2	(6)	Yield	Ratio ^b	Yield	Ratio ^b	Yield	Ratio ^b	Ref
a	Me	Ph	998	86%	88:12	97%	16:84	88%	88:12	1
b	Me	(CH ₂) ₂ OH	38%	97%	85:15	97%	12:88	100%	70:30	10
с	Me	(CH ₂) ₃ OH	91%	938	78:22	87%	12:88	76%	74:26	10
đ	Me	$(CH_2)_3 OR^C$	90% ^C	72%	75:25	578 ^d	14:86	63%	70:30	10
е	Me	2-furyi	92%	948	95:5	92%	35:65	-	-	
f	Me	2-pyridy1	94%	91%	90:10	92%	75:25	-	-	
g	Me	e	88%	99%	85:15	99%	15:85	96%	94:6	1
h	Et	Ph	71%	99%	93:7	98%	14:86	998	93:7	
i	Et	Me	628	94%	86:14	99%	29:71	-	-	
j	Et	(CH ₂) ₅ OH	62%	89%	89:11	90%	18:82	81%	85:15	11
k	Et	C6H11f	72%	reduc	ction ve	ery slo	w	-	-	
1	(CH ₂) ₂ (OH Ph	76% ^g	100%	97:3	100%	59:41	92%	95:5	11

a. from (5), LDA, and ester or lactone unless otherwise stated.

- b. threo:erythro
- c. $R = t-BuPh_2Si$, from (7c) by silulation.
- d. and 12% silanol: desilylation occurs during reduction.
- e. R^2 = 3,4-methylenedioxyphenyl, for (7g) see diagrams.
- f. cyclohexyl.
- g. by acyl transfer, see reference 11.

This reversal is <u>not</u> found with the α -Ph₂PO-ketones (1), instead a lower <u>threo</u> selectivity is observed; e.g. (1h) gives 93:7 <u>threo:erythro</u> (2h) with NaBH₄ and 77:23 with CeCl₃. These methods allow the isolation of pure <u>erythro</u> or <u>threo</u> intermediates (7) in high yield from the same starting material and can thus be used to prepare pure <u>E</u>- or <u>Z</u>-alkenes.⁶ The synthesis of both intermediates <u>threo</u>-(7g) and <u>erythro</u>-(7g) for the Horner-Wittig synthesis¹ of isosafrole illustrates this approach.

erythro~(7g) 99% 15:85

The only steric difference between the dibenzophosphole oxide and Ph_2PO groups is the rigidity of the former. This may allow the chelated ketone (8) to form since the planar rings are held away from R^1 , whereas a similar structure with Ph_2PO would have at least one Ph group close to R^1 . Reduction of (8) from the opposite side to R^1 now gives <u>erythro</u>-(7). The effect is reduced (6e) or disappears (6f, l) when an alternative chelating group is provided. In the absence of cerium, we prefer the Felkin model (9) for both reductions and suggest that, for the α -Ph_2PO-ketones (1), cerium decreases the stereoselectivity by a small amount of chelation.

Another chelating agent, $Zn(BH_4)_2$, has a similar effect, while other nonchelating agents with greater bulk: Superhydride¹² (Et₃BHLi) or L-Selectride¹² (s-Bu₃BHLi) give even greater <u>threo</u> selectivity (table 2) with (6a). However, L-selectride reductions were very slow and starting material was recovered.

Table 2: Effects of other Reducing Agents.

Compound	Reagent	Conditions	Yield	<u>Threo</u> :Erythro
(6a)	NaBH ₄	MeOH, O ^O C, 2 h	86%	88:12
(6a)	NaBH4/CeCl3	MeOH,-78 ⁰ C, 1 h	978	16:84
(ба)	$2n(BH_4)_2$	Et ₂ 0,-78 ⁰ C, 15 h	95%	<2:98
(6a)	s-Bu ₃ BHK	THF,-78 ⁰ C, 16 h	82%	91:9
(6a)	s-Bu ₃ BHLi	THF, O ^O C, 5 h	90%	98:2
(6a)	Et ₃ BHLi	THF,-78 ⁰ C, 4 h	92%	96:4
(6g)	Et ₃ BHLi	THF,-78 ⁰ C, 6 h	90%	98:2

We thank S.E.R.C. for a grant (to J.E.) and Dr G. H. Whitham for helpful discussions and for a preview of reference 6.

References

- A.D. Buss and S. Warren, <u>Tetrahedron Lett.</u>, 1983, 24, 3931; <u>J. Chem.</u> Soc., Chem. Commun., 1981, 100: Perkin Trans. 1, in the press.
- 2. A.D. Buss, R. Mason, and S. Warren, <u>Tetrahedron Lett.</u>, 1983, 24, 5293.
- S.D. Burke, J.O. Saunders, J.A. Oplinger, and C.W. Murtiashaw, Tetrahedron Lett., 1985, 26, 1131.
- A.D. Buss, W.B. Cruse, O. Kennard, and S. Warren, <u>J. Chem. Soc.</u>, Perkin Trans. 1, 1984, 243.
- A.D. Buss, S. Warren, J.S. Leake, and G.H. Whitham, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1983, 2215.
- T.G. Roberts and G.H. Whitham, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 1</u>, 1985, 1953.
- J. Cornforth, R.H. Cornforth, and R.T. Gray, <u>J. Chem. Soc.</u>, Perkin Trans. 1, 1982, 2289.
- 8. R.S. Torr and S. Warren, J. Chem. Soc. Pak., 1979, 1, 15.
- 9. This reagent was introduced for the regioselective reduction of enones to allylic alcohols, J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226; A.L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454, and was modified for stereoselectivity: S.J. Danishefsky and C.J. Maring, J. Am. Chem. Soc., 1985, 107, 1269.
- 10. P.M. Ayrey, unpublished observations.
- 11. A.D. Buss, N. Greeves, D. Levin, P. Wallace, and S. Warren, <u>Tetrahedron</u> <u>Lett.</u>, 1984, 25, 357; P. Wallace and S. Warren, <u>Tetrahedron Lett.</u>, 1985, 26, 5713.
- 12. Trade names, compounds supplied by the Aldrich Chemical Company.

(Received in UK 25 November 1985)

648